Iron-based mixed catalysts for CO₂ conversion to liquid fuels

Hungarian Catalysis Society

Presented by: Ali Shan Malik (Ph.D.) (Postdoctoral Fellow - Prof. Andras Sapi's Research Group) Department of Applied & Environmental Chemistry, Szeged University, Szeged

- Profile Summary
- Current Research Overview
 - **Research Introduction**
 - **Experimental Design**
 - Catalyst Performance Evaluation
 - Catalyst Characterization

Ali Shan Malik Ph.D. Postdoctoral Fellow

Profile Summary

Solution-oriented chemical engineer/research scientist backed by experience of over 06 years in collaborative (Industry & Academic) research in

- Applied heterogeneous catalysis
- Kinetics studies
- Materials characterization via advanced tools with strong expertise in spectroscopies (e.g., in situ DRIFTS and XPS) and TEM/STEM
- Structure-activity relationships, and reaction mechanisms leading to successful investigation of novel materials for direct CO₂ conversion into methanol, dimethyl ether and C₅₊ hydrocarbons
- And over 10 years in project & resource management, process optimization and knowledge of industry

Current Affiliation & Research Team: At present, working in Prof. Andras research group at Szeged University on CO_2 Conversion to C_{5+} hydrocarbons and process scale up; involved in catalyst synthesis, characterization and catalyst performance evaluation

Previous Affiliations: Worked with Prof. Maguy Research Group at Khalifa University, UAE and with Prof. M. A, Daous at King Abdulaziz University, KSA.

Prof. Andras Sapi Assistant Professor Department of Applied and Environmental Chemistry, Szeged University, Hungary

Dr Sara Najari Postdoctoral Fellow Szeged University

Henrik Bali PhD Student Szeged University

CO₂ Conversion to Liquid Hydrocarbons

Motivation

- \checkmark CO₂ an important C₁ building block possesses great potential to be used as a feedstock for a variety of fuels and chemicals
- \checkmark Turning CO₂ into liquid hydrocarbons is highly interesting due to higher energy densities and greater economic benefits \checkmark Reduction in greenhouse gas emission addressing global warming concerns
- \checkmark An alternative to depleting fossil fuel sources

CO₂ Conversion to Liquid Hydrocarbons

Challenges

- $\checkmark CO_2$ is a highly oxidized, less reactive and thermodynamically stable molecule ($\Delta G^\circ{\sim}{-}394~kJ/mol)$
- ✓ Turning CO₂ into high-value hydrocarbons (HCs) mostly C₅₊ HCs is relatively more challenging due to the high barrier associated with the C-C coupling, low selectivity due to C₁ products and poor stability

Key Actions

- ✓ Efficient materials design strategies; tandem catalysis approach
- ✓ Deeper insight of the structure sensitivity, role of active sites and promoters
- ✓ Proximity effects of multi-active sites; Efficient catalyst design brings opportunities to improve catalytic activity and selectivity for CO₂ conversion by tuning the key adjustable factors such as active metals, supports, promoters, preparation procedures and many others

CO₂ Conversion to Liquid Hydrocarbons

Scale up Processes

✓ First demonstration plant producing gasoline range HCs of around 1000 tons/year capacity has been successfully developed in China in March 2022.

A pilot-scale demonstration of kiloton gasoline-ranged hydrocarbons synthesis represented by aromatics and isoparaffins per year via CO_2 hydrogenation.

Table 1: Recent studies with catalyst systems for conversion of CO_2 to C_{5+} hydrocarbons.												
Catalysts	CO ₂ Conv.	CO Sel.	CH Sel.	Hydrocarbon Distribution (%) ^a		GHSV	T/°C	P/MPa	Ref.			
	(%)	(%)	(%)	CH_4	C ₂ -	C ₄ ⁰	$C_2 - C_4^{=}$	C ₅₊	ml g ⁻¹ h ⁻¹			
		C ₅₊ hydroc	arbons ba	ised on	metha	inol r	eaction n	nechanis	m			
In ₂ O ₃ /HZSM-5	13.1	44.8	-	1.0	-	-	7	8.6	9000	340	3.0	<u>26</u>
InCo/Zn-HBeta	15.0	36.0	61.0	4.0	-	-	8	0.0	-	300	5.0	<u>27</u>
Ae-ZnO-ZrO ₂ (1:8)/Z5	16.0	34.3	65.7	0.3	12.8	6.6	8	0.3	7200	340	4.0	<u>28</u>
ZnAIO _x and HZSM-5	9.1	57.4	42.6	0.5	6.7	10.7	7 8	0.3	2000	320	3.0	<u>29</u>
ZnZrO/HZSM-5	14.1	43.7	57.3	0.3	14.5	4.9	8	0.3	1200	320	4.0	<u>16</u>
Cr ₂ O ₃ /HZSM-5	33.6	41.2	-	3.0	15.7	3.1	7	8.2	1200	350	3.0	<u>30</u>
Fe–Zn–Zr@HZSM–5–HY	14.2	40.5	59.3	1.8	55.5		3	3.7	3000	340	5.0	<u>31</u>
$Cr_2O_3/Zn-H-ZSM-5@SiO_2$	22.1	35.1	-	2.9	19.1	8.0	7	0.0	1200	350	3.0	<u>32</u>
ZnCrOx/ZnZSM-5	30.5	60.8	39.2	-	-	-	5	8.0	2000	350	5.0	<u>33</u>
		C ₅₊ hyd	rocarbons	based o	n CO ₂ i	nodifi	ed FTS me	e chanism				
FeZnK – NC	34.6	21.2	78.8	24.2	7.1	40.6	5 2	8.1	7200	320	3.0	<u>34</u>
Fe – 2K	30.0	22.0	74.0	31.1	14.9	32.4	4 2	1.6	-	320	2.0	<u>35</u>
CuFeO ₂ - 24	16.7	31.4	-	2.4	-	-	6	4.9	1800	300	1.0	<u>36</u>
Na – CoCu/TiO ₂	18.4	30.2	-	26.1	-	-	4	2.1	3000	250	5.0	<u>37</u>
10Fe0.8K0.53Co	54.6	2.0	98.0	19.3	7.8	24.9	> 4	8.0	560	300	2.5	<u>38</u>
Na – Fe ₃ O ₄ /HZSM-5	22.0	20.1	-	4.0	-	-	7	9.4	4000	320	3.0	<u>41</u>
10Fe4.8K	35.2	9.0	91.0	8.1	4.3	16.4	4 7	1.2	560	300	2.5	<u>38</u>
Fe – Cu-K – La/TiO ₂	23.1	33.0	67.0	19.4	-	-	6	7.2	3600	300	1.1	<u>42</u>
92.6Fe7.4K	41.7	6.0	94.0	10.9	23.0	6.5	5	9.6	560	300	2.5	<u>43</u>
ZnFeOx-4.25Na/S-HZSM	36.2	11.0	89.0	8.2	13.3	3.2	7	5.4	4000	320	3.0	<u>44</u>
$Fe_5C_2 - 10K/a - Al_2O_3$	43.9	17.2	-	38.6	38	3.2	2	3.2	4000	320	3.0	<u>45</u>
Fe – Zn – Zr@HZSM	21.5	42.4	52.4	1.4	42	2.8	5	5.8	3000	340	5.0	<u>46</u>
15Fe–10K/Al ₂ O ₃ /P–HZSM	36.4	10.2	-	10.9	39	9.6	4	9.5	3000	400	3.0	<u>47</u>
Na–Fe@C/H–ZSM–5–0.2	33.3	13.3	86.7	4.8	10).4	8	4.8	-	320	3.0	<u>48</u>
1Na – Fe/HZSM-5-150	47.4	10.1	89.9	8.2	21	.8	7	0.0	4000	340	3.0	<u>49</u>
FeK1.5/HSG HZSM – 5(50)	45.0	20.0	80.0	2.8	4	.2	9	3.0	14000	340	3.0	<u>50</u>
^a The hydrocarbon distribution was calculated without CO												

Research Work

Catalytic Conversion of CO2 to liquid hydrocarbons via efficient catalyst design and development

Purpose of Research Novel Catalyst Design Improvement in CO2 conversion and selectivity Contribution to the scientific knowledge in the area of nanocatalysis and its applications CO2 hydrogenation process	Purpose of Research	Research Introduction	Research Introduction CO2 as Primary Feedstock Catalyst development for direct CO2 conversion to liquid Scale up of Operation
Identification of reaction chanism Industrial Significance Economic and Global Impact Cheap Energy and Transportation Fuels Minimizing dependence on fossil fuels Utilizing Current Industry Infrastructure	Industrial Significance	Our Contribution	Current Research FEZDCE Droject NaFe Project Fe Carbide Project

Catalyst Design and Selection of Active Component

Active

Component

Fe was chosen as an active component as both of its oxides Fe_2O_3 and Fe_3O_4 are found to be very active for CO_2 conversion to higher HCs

Promoters

- Zn and K were chosen as promoters owing to their excellent contribution to Fe-based catalyst for CO₂ conversion.
- Addition of zinc to iron matrix forms $ZnFe_2O_4$ spinel phase and ZnO phase, increasing of the surface area and enhances the interaction between iron and zinc thereby altering the reduction and CO_2 adsorption behaviors.
- Potassium, on the other hand, improves the product distribution of higher hydrocarbons.

Support

CeO₂ as a support was selected based on its excellent CO_2 adsorption and activation affinity and ability to generate vacancies oxygen which improves the CO_2 conversion

Catalyst Synthesis and Pretreatment

A series of FeZn and K-promoted FeZn catalysts supported over mesoporous CeO₂ were prepared via Sol-gel Chelatization method using citric acid as a chelating agent

Catalyst	Fe (wt. %)	Zn (wt. %)	K (wt. %)	CeO ₂ (wt. %)
20F/CeO ₂	20.0	0.0	0.0	80.0
20 Fe 5 Zn/CeO $_2$	20.0	5.0	0.0	75.0
$20Fe10Zn/CeO_2$	20.0	10.0	0.0	70.0
$1K20Fe5Zn/CeO_2$	20.0	5.0	1.0	74.0
3K20Fe5Zn/CeO ₂	20.0	5.0	3.0	72.0
$5K20Fe5Zn/CeO_2$	20.0	5.0	5.0	70.0

Synthesis
Calculated amount of metal salts solution were prepared and mixed with citric acid solution, heated at 110 °C with continuous stirring to form a yellow color Gel. Later dried in an oven overnight at 80 °C

Calcination

• Catalyst samples were calcined in dry air at 500 °C for 5 hrs

180 mg of catalyst weight was loaded into fixed-bed reactor and reduced at 450 °C under pure H₂ atmosphere for 4 hrs prior reaction.

Experimental Design

Catalyst Performance Evaluation

Catalyst	Si/Al	Configuration	T (°C)/P (bar)	Х _{со2} %	S _{CO} %	S _{CH3OH} %	S _{CH} %	Hydrocarbon Selectiv (%)		ectivity
								C ₁	$C_{2} - C_{4}$	C ₅₊
Fe/Ce	-	Pellets	340/50	16.5	48.0	0.0	52.0	42.4	9.6	0.0
Fe5Zn/Ce	-	Pellets	340/50	16.68	28.4	15.9	55.69	30.9	23.5	1.3
Fe10Zn/Ce	-	Pellets	340/50	16.14	49.0	8.01	42.99	28.6	13.4	0.79
Fe5Zn/Ce/HZSM5	150	Granule Mixing	340/50	16.20	37.5	9.4	53.1	22.6	10.7	19.8
Fe5Zn/Ce/HZSM5	80	Granule Mixing	340/50	15.85	34.9	12.1	53.0	18.3	4.3	30.4
Fe5Zn/Ce/HZSM5	50	Granule Mixing	340/50	15.35	54.7	10.4	34.9	11.7	4.1	19.1
Fe5Zn/Ce/HZSM5	30	Granule Mixing	340/50	15.2	60.1	11.1	28.8	8.52	3.6	16.6

Reaction Conditions: GHSV: 3300 mL/g.hr; Reaction Time; 3 hrs

 \geq RWGS is dominant > 300 °C; Methanol synthesis is dominant at < 300 °C

Formed methanol further converted to hydrocarbons with zeolite addition, suppressing CO and CH₄. **Catalyst Bed Configuration**

Reaction Conditions: T: 340 °C, P: 50 bar GHSV: 3300 mL/g.hr; Reaction Time; 3 hrs

Catalyst Characterization

Catalyst Characterization

BET and TPD results

Catalyst	S _{BET} (m ² g ⁻¹)	V _p (mLg ⁻¹)	W _p (nm)	mmol NH ₃ /g	mmol CO_2/g
20Fe/CeO ₂	51.3	0.14	11.2	0.02	0.023
$20Fe5Zn/CeO_2$	59.7	0.16	12.1	0.07	0.18
$20Fe10Zn/CeO_2$	63.34	0.17	9.9	0.13	0.15
$1K20Fe10Zn/CeO_2$	78.6	0.23	11.8		0.30
$3K20Fe10Zn/CeO_2$	70.5	0.19	10.8		0.35
$5K20Fe10Zn/CeO_2$	39.0	0.11	11.0		0.40

Research Vision & Future Plans

Design and develop efficient catalytic materials and catalytic routes for highly efficient activation and conversion of CO₂ to valuable fuels and chemicals

Short Term

Short Term

Understanding structureperformance relationships and role of active sites using advanced tools and computational modelling of energy catalysis systems to provide fundamental understandings of catalytic activation and reaction mechanism for catalyst optimization and development

Long Term

Explore novel reactions, approaches, and methodologies by catalysis, reaction engineering innovation, and green chemistry especially in areas of CO2 conversion to liquid fuels

Scale up the liquid fuel production process by addressing the engineering challenges associated with the process

Long Term

