

SrTiO₃ and SrTiO₃-based composites for photocatalytic CO₂ hydrogenation

Dr. Mohit Yadav Postdoctoral fellow Department of Applied and Environmental chemistry University of Szeged

Dr. Andras Sapi (Supervisor)

Assistant Professor Department of Applied and Environmental Chemistry University of Szeged, Hungary

Presentation outline

- Background of study and Research scope
- Outline of the Project
- Specifications of the photocatalytic reactor
- Characterization results
- Photocatalytic results and discussion
- Major conclusions
- Future work

Background and research scope

Industrial Electric power stations 15.9% processes 25.6% Transportation fuels Waste disposal 13.2% and treatment 3.6% Residential. 7.5% commercial, & Land use and other sources 12.1% biomass burning Fossil fuel retrieval, 10.5% processing, and Agricultural production 11.6% distribution

Annual Greenhouse Gas Emissions by Sector

- Energy consumption has been increasing with the world population
- Fossil fuels are the main source of energy supply
- Combustion of fossil fuels generates greenhouse CO₂

Major contributor

Outline of the Project

Optimization of the SrTiO₃ (STO) based on crystallization time crystallization media purification issues

STO-I STO-III STO-IV STO-V STO-VI STO-VII Noble metals (X= Rh, Ru and Pt) Noble metals effectively facilitates the surface plasmon resonance (SPR) for trapping electrons and boost the reduction potential of neighboring metal oxide . Also, trapping CO₂ in the

11

Also, trapping CO₂ in the **Carboxyl, carbonates**, **formates**, which are key intermediates towards the products.

Nanodiamonds (NDs)

A form of carbon nanomaterials, possess **excellent catalytic properties** because of its unique crystalline phase comprising of **sp² hybrid graphite and sp³ diamond core**. Smaller particle sizes (**4–5 nm**) and high specific surface area (~ **300 m² g⁻** ¹)

Upon coupling of NDs with the metal oxides formation of **heterojunction** takes place that efficiently facilitates the **charge transfer mechanism** and **separation of the electron-hole pairs**

Sequential Deposition of Noble metals (X) and NDs on STO Χ **STO STO** ND Χ STO ND

STO

IV

Χ

ND

IV

Specifications and reaction conditions of the photocatalytic reactor system

- HP 5890 Series II Gas Chromatograph
- Light source: 500 W mercury vapor lamp (TQ 718, Heraeus Noble light, Germany)
- Weight of sample used: 250-300 mg
- Pressure (CO_2+H_2) : 200 mbar, Flow = 15 mL/min
- Column used: A 2 meter long column packed with Porapak QS

Image of

Characterization

Table. Catalyst loadings along with BET surface areas, Band gap and primary crystallite size values.

Sample	Rh, Ru and Pt (wt%)	ND (wt%)	S.S.A (m ² g ⁻¹)	Band Gap (eV)	Primary crystallite size (nm)
STO	-	-	51.8	3.28	19.3
ND	-	-	302.5	2.88	3.59
STO-Pt	1	-	52.7	3.24	19.53
STO-Pt-ND	1	10	71.8	3.22	20.7
STO-ND-Pt	1	10	72.1	3.16	20.78
STO-Rh	1	-	53.7	3.26	19.34
STO-Rh-ND	1	10	69.7	3.25	20.24
STO-ND-Rh	1	10	72.3	3.17	20.4
STO-Ru	1	-	52.9	3.23	19.31
STO-Ru-ND	1	10	70.9	3.2	19.98
STO-ND-Ru	1	10	73.8	3.08	20.23

Characterization

TEM images of the samples

Samples	% CO ₂	Formation of products		Selectivity (%)	
	conversion	(nmol/gh)			
		СО	CH ₄	СО	CH ₄
STO	35.5	744.8	27.1	96.5	3.5
STO-ND	38.1	790.5	105.4	88.2	11.8
STO-Pt	36.1	788.1	38.3	95.4	4.6
STO-Pt-ND	39.9	896.7	74.5	92.3	7.7
STO-ND-Pt	41.6	917.3	123.8	88.1	11.9
STO-Rh	36.2	786.4	43.5	94.8	5.2
STO-Rh-ND	42.8	936.1	132.2	90.1	9.9
STO-ND-Rh	44.4	1050.7	116.4	87.6	12.4
STO-Ru	42.3	1022.4	69.3	93.6	6.4
STO-Ru-ND	45.9	1117.1	124.4	89.9	10.1
STO-ND-Ru	47.5	1131.5	190.3	85.6	14.4

DRIFTS measurements for the optimized STO-Ru-ND and STO-ND-Ru samples

_

STO-R	Ru-ND	STO-ND-Ru		
Wavenumber (cm ⁻¹)	Species	Wavenumber (cm ⁻¹)	Species	
3000-3700	Hydroxyl region	3000-3700	Hydroxyl region	
2400-2200	CO ₂	2400-2200	CO ₂	
2024, 2272	Linearly adsorbed	2032, 2272	Linearly adsorbed	
	CO _{ad}		CO _{ad}	
1690, 1662	Carboxylic acid		Carboxyl	
2957, 2775, 2684,	Bridged Formate	2952, 286, 1575,	Bridged Formate	
2866, 1588, 1363		1363		
1563	Bidentate carbonate	-	Bidentate carbonate	
-	Bridged carbonate	1721	Bridged carbonate	
-	Inorganic carboxylate	1510	Inorganic	
			carboxylate	

Major Conclusions

Optimization of STO samples on the basis of certain factors followed by sequential deposition of noble metals and NDs was carried out and were tested for photocatalytic CO₂ hydrogenation.

The light absorption properties and the specific surface areas were enhanced with the deposition of noble metals and NDs.

The selective deposition also directly effected the formation and selectivity of the products i.e., ND directly attached to STO enhanced the formation of CH₄, however, deposition of Noble metals with produced mostly CO with little amount of CH₄.

Overall the photocatalytic activity was enhanced with deposition of both noble metals and ND, and STO-ND-Ru showed the highest activity and formation rate for the products.

Future Plans

Thank you!